• dicembre: 2019
    L M M G V S D
    « Nov    
     1
    2345678
    9101112131415
    16171819202122
    23242526272829
    3031  
  • Inserisci il tuo indirizzo e-mail per iscriverti a questo blog e ricevere notifiche di nuovi messaggi per e-mail.

    Segui assieme ad altri 1.418 follower

  • Statistiche del Blog

    • 311.435 hits
  • Traduci

Una dieta con grassi fa bene al cuore, ai muscoli ed al cervello


Pagine-da-Saturated-fat-is-(post di Enzo Soresi) Molto scalpore ha suscitato un recente articolo, ripreso da più parti, del cardiologo interventista londinese Aseem Malhotra in cui ha ribaltato  tutti gli ultimi anni di suggerimenti affermando che sono più dannosi i carboidrati dei grassi saturi. Secondo questo medico è ora di distruggere il ruolo negativo  che i grassi saturi avrebbero nella insorgenza di malattie cardiache. Già alcune nazioni come ad esempio  la Svezia stanno adottando linee guida che incoraggino una dieta ricca di grassi e povera di carboidrati.

L’avere eliminato burro, panna e cibi grassi può avere fatto più male che bene per quanto riguarda l’insorgenza di malattie cardiache. Gli esperti dicono che milioni di persone sono state curate erroneamente con le statine sulla base di studi scientifici scorretti. Il cardiologo Aseem Malhotra, specialista in cardiologia interventistica presso l’ospedale universitario di Croydon a Londra,  sostiene che l’avere tagliato da 4 decadi in modo drastico i grassi saturi che si trovano nel burro, nella panna e nella carne meno magra hanno paradossalmente aumentato i nostri rischi cardiovascolari. Questo errore nasce da uno  studio degli anni ’70  che dimostrava l’esistenza di un legame fra malattia cardiaca e livello di colesterolo nel sangue correlato con le calorie apportate dai grassi saturi. Uno dei primi lavori scientifici sull’obesità pubblicato su Lancet nel 1956 che paragonava gruppi a dieta con prevalenza di  carboidrati, verso gruppi a dieta con prevalenza di grassi, aveva dimostrato che questo secondo gruppo perdeva peso in modo più significativo del primo.

Uno dei possibili fattori di rischio nella sindrome metabolica, che può portare a sviluppare un diabete di secondo tipo, è rappresentato proprio dai carboidrati raffinati. La dieta mediterranea,  secondo questo cardiologo,  ricca di olio d’oliva è molto più cardioprotettiva delle statine. Gli zuccheri complessi  fanno molto più male dei grassi ed in generale un buon cibo fa bene a tutti. Il fatto che il livello di  colesterolo elevato sia la causa primaria delle malattie cardiache è il peggiore errore dei nostri tempi  e personalmente aggiungo di avere numerosi pazienti anziani  con colesterolemia elevata che godono di ottima salute ed hanno carotidi con minimo accenno di arteriosclerosi.

Alla base di queste affermazioni, aggiungo ancora io, c’è che l’insorgenza della malattia arteriosclerotica  è correlata  al processo infiammatorio dell’endotelio vascolare e l’infiammazione è a sua volta correlata allo stile di vita. Ecco perché i pazienti fumatori o i pazienti stressati  sono i più penalizzati. Il tanto decantato libro The China Study che demonizza i valori di colesterolemia manca completamente di una correlazione fra livelli di colesterolo e stile di vita della popolazione cinese su cui si è svolta l’indagine epidemiologica, ed è noto a tutti che i cinesi sono pesanti fumatori.

Se inoltre consideriamo che muscoli e cervello si nutrono di grassi saturi possiamo serenamente ritornare al nostro pane e burro come colazione del mattino senza però fumarci una sigaretta dopo ma anzi uscendo a fare due passi o andando in ufficio a piedi.

Riferimenti:

Aseem Malhotra, interventional cardiology specialist registrar, Croydon University Hospital, London, Saturated fat is not the major issue, BMJ 2013;347:f6340

 

Enzo Soresi: “Grazie ad un verme, siamo diventati Homo Sapiens”


file1370265425_20_longevitàVenerdi 20 settembre ho partecipato  al congresso della Fondazione Veronesi a Venezia, il tema era la longevità e gli spunti che ne ho tratto sono stati molteplici ed interessanti sia per uso personale che nell’interesse dei miei pazienti. Piena conferma, ahimé, da parte di molti ricercatori, della restrizione calorica (almeno 30 % di in meno di cibo) per ridurre le malattie ed aumentare la sopravvivenza. Due studi fondamentali, uno sui topi ed uno sulle scimmie, hanno confermato questa triste verità. In un mondo occidentale ricco di obesi e persone in sovrappeso, in cui le città d’arte sono diventate uno squallido mangificio,  la scienza ci dice  che meno si mangia (entro certi limiti) e più e meglio  si campa. Non solo, il segreto per evitare di ammalarsi è diventare vegetariano mangiando cibi di qualità. Questa osservazione deriva da uno studio randomizzato sulle scimmie in cui il gruppo che si nutriva di cibi vegetali naturali si ammalava meno di quello nutrito con cibi industriali, sempre vegetali.

Estremamente stimolante è stata , abbandonando il tema del cibo, la relazione del prof. Seth Grant, neuroscienziato dell’Università di Edimburgo, che ha spiegato l’importanza delle sinapsi nella evoluzione del cervello precisando che nel contatto sinaptico si possono liberare fino a 1000 tipi di sostanze proteiche che sono esattamente uguali a quelle liberate dalla prima cellula  in contatto con l’ambiente qualche milione di anni fa. Ha precisato poi che la nascita del sistema nervoso la si deve ad un doppio colpo di fortuna , analoga a quella di vincere per due volte consecutive ad una lotteria. Infatti, un nostro antenato, denominato PICAIA (un piccolo verme), nel suo processo evolutivo ha raddoppiato per due volte il suo genoma e questo ha fatto nascere le strutture nervose. Il prof Grant è fondatore del  programma G2C, un consorzio internazionale di ricerca e formazione per lo studio delle malattie cerebrali, in quanto le sue scoperte  hanno confermato l’importanza delle sinapsi  in queste patologie e la relazione fra geni, comportamento e malattie cerebrali.

Il prof. David Sweatt, neurobiologo dell’Università dell’Alabama, ha spiegato l’importanza della metilazione e della acetilazione nei meccanismi di formazione della memoria a breve e lungo termine confermando l’importanza della alimentazione nell’invecchiamento del cervello. Già qualche tempo fa su questo blog avevo spiegato l’importanza dei metili nella stabilizzazione del DNA.  Sweatt ha ricordato che le cellule neuronali, a differenza delle altre cellule, non si deteriorano con il passare degli anni mentre quella che si riduce progressivamente è la produzione di dopamina così importante per l’attività motoria ed il tono dell’umore. A questo proposito, sempre su questo blog, vi ho spiegato l’importanza della molecola adenosina metionina , scoperta da un italiano negli anni ’50, nel favorire la liberazione di questa sostanza in grado di stimolare la liberazione di dopamina ed ottimizzare la sensibilità all’insulina.

Grande rilievo  infine è stato dato dal prof.  Giovanni Scapagnini agli isocianati, contenuti in grande quantità nei mirtilli e nei lamponi, che per la loro caratteristica di idrosolubilità attraversano la barriera ematoencefalica sviluppando una importante protezione sul micro-circolo vascolare cerebrale ed in generale su tutto l’apparato cardiovascolare.

Logica conclusione di questo congresso:  stamane colazione con latte di soia, pane integrale  ed una tazza di yogurt magro con mirtilli (post di Enzo Soresi).

Epigenetica del movimento: esercizio fisico e suoi vantaggi


EpigeneticaMovimentoL’attività fisica è notoriamente  efficace su più fronti in quanto mantiene i muscoli più tonici e funzionali, rende elastiche le articolazioni, è benefica per l’apparato cardiovascolare, riduce colesterolo e trigliceridi, induce  una lieve attività antiaggregante e controlla il sovrappeso. Contrasta malattie come l’osteoporosi ed ha una attività antistress riducendo ansia e depressione.

Camminando  a passo svelto inoltre, i muscoli liberano un ormone noto come body nerve growth factor che nutre il cervello e favorisce la produzione di cellule staminali cerebrali. L’ultima novità,  che deriva da uno studio scientifico svedese eseguito dalla Lunde University Diabetes Centre, confermato successivamente da un secondo studio del Karolinska Institute ,  sembrerebbe essere la capacità da parte di un adeguato fitness di controllare l’espressione del diabete in pazienti a rischio per sovrappeso e rischio genetico, inibendo l’espressone epigenetica del gene che induce lo sviluppo di questa malattia.

Da tempo è nota l’importanza dell’alimentazione  sulla attività dei geni in particolare sul meccanismo epigenetico di questi. Si tratta in definitiva di piccoli cambiamenti,  con maggiore frequenza di metilazioni ( aggiunta al DNA di un gruppo metile costituito da 3 atomi di idrogeno ed 1 di carbonio), queste variazioni non alterano il genoma ma modificano il modo e la tempistica con cui i geni vengono accesi o spenti agendo di conseguenza sulla loro attività.

Un esempio interessante già riportato su questo blog è quello condotto su una razza di topolini obesi le cui madri, se in gravidanza vengono nutrite con pappa ricca di sostanze metilanti (la comune lattuga cruda è piena di metili), partoriscono topolini normali e non obesi in quanto viene bloccato il fattore epigenetico che induceva l’obesità.

Uno studio recente dell’ Institute for Food Research dell’Università di Newcastle in Inghilterra ha dimostrato, attraverso un prelievo di cellule dal colon di un gruppo di volontari, come la metilazione potesse essere responsabile di modificazioni del gene di tipo epigenetico correlate con alcuni nutrienti in particolare vitamina d e selenio.

Negli uomini, in particolare sopra i 50 anni ed in sovrappeso, il rischio di tumore al colon è aumentato nel caso di un eccesso  di acido folico o difetto di vitamina d e selenio.  Praticare quindi attività fisica, oltre a mantenersi più giovani,  rappresenta  un nuovo fattore di prevenzione sullo sviluppo del diabete di tipo 2 che sta diventando una malattia epidemica nei paesi occidentali sia per il tipo che per la quantità eccessiva di alimenti.

Più sale-meno sale. Più grassi-meno grassi. Paradossi della medicina


SaleSaluteDopo avere passato anni ad addestrare i miei pazienti ad usare il sale con parsimonia perché aumenta la pressione arteriosa e favorisce malattie cardiovascolari, ecco un intervento del prof. Mantovani, eminente immunologo e direttore scientifico dell’ospedale Humanitas, che mette punto, fermo restando che l’abuso crea  problemi cardiovascolari, l’importanza del sale nella difesa dell’organismo e sul suo ruolo nello sviluppo di malattie. Due diversi studi pubblicati su Nature hanno riportato la scoperta di un sensore molecolare posto nelle cellule della immunità in grado di percepire la concentrazione di sale e di innescare una risposta immunitaria che porta alla differenziazione di un sottotipo di linfociti T in grado di attivarsi in funzione degli agenti patogeni che  attaccano il nostro organismo. Questo particolare tipo di cellule, definite TH 17, in particolare combattono i batteri extracellulari quali lo streptococco e lo stafilococco. Questa osservazione confermerebbe l’importanza del sale nello sviluppo del sistema immunitario, ma nello stesso tempo aprirebbe l’ipotesi allo sviluppo di malattie autoimmuni che fa eccesso di sale. Come clinico concluderei invitando ad attuare con gli esami del sangue di routine anche il controllo del quadro elettrolitico che evidenzia i livelli ematici di sodio, cloro e potassio.

L’altro paradosso sicuramente più complicato da interpretare è quello che il sovrappeso, addirittura ai limiti della obesità,  in pazienti anziani ed anche portatori di malattie croniche rappresenterebbe un fattore di prevenzione in quanto è stata dimostrata   una minore mortalità di questo gruppo rispetto a coetanei normopeso ed in perfetta salute. Questa affermazione deriva da uno  studio inequivocabile effettuato da biostatistici del Centers for disease control di Atlanta pubblicato su Jama. Chi è in sovrappeso con un indice di massa corporea  (BMI) fra 25 e 30  ha una diminuzione del rischio di morte del 6 % rispetto a chi è normopeso, mentre chi è obeso ha un rischio morte superiore del 18 %. Le ipotesi per spiegare questa contraddizione sono molteplici ma forse la più logica  potrebbe essere quella  che molte di queste persone sono seguite più attentamente dai medici ed assumono farmaci salvavita come ipotensivi ed antiaggreganti con maggiore frequenza.

Fat Change: Robert H. Lustig e l’amara verità sullo zucchero


LustigOKSegnatevi questo nome, ne risentirete parlare, appena i nostri giornalisti si accorgeranno del putiferio e del seguito che sta avendo e, soprattutto, quando il suo libro “Fat Chance” sarà pubblicato anche in Italia: Robert H. Lustig.

Lustig è endocrinologo pediatrico, professore di pediatria all’ Università della California di San Francisco, esperto di obesità infanto-adolescenziale.

Il suo saggio “Fat Chance” è una decisa presa di posizione contro lo zucchero, gli alimenti e le bevande zuccherate. Secondo Lustig la pandemia di sovrappeso e obesità nel mondo sono causate dallo zucchero e dell’alimentazione scorretta dell’ultimo secolo. Il suo indice è puntato in particolare sul fruttosio che definisce senza mezzi termini come una “tossina”, per l’accumulo di grasso che determina nel fegato.

Secondo Lustig lo zucchero delle nostre diete sbilanciate stimola la secrezione di insulina, da cui deriva uno stoccaggio di energia alimentare nelle cellule adipose. Alla lunga questo determina una alterazione sui segnali di fame-sazietà che giungono al cervello. L’ormone leptina dovrebbe segnalare al cervello di ridurre l’assunzione di cibo. Ma siccome il cervello delle persone obese ha sviluppato resistenza all’insulina e, di conseguenza, anche alla leptina, il messaggio di bloccare l’assunzione di cibo non arriva.

Questo di Lustig non è l’ennesimo libro su diete e obesità. E’ una denuncia e un invito a prendere provvedimenti urgenti e pratici a livello politico, economico e sociale. Anche se qualche soluzione pratica Lustig la fornisce: drastica riduzione dei consumi di zucchero, maggiore assunzione di alimenti che contengono elevate quantità di fibra alimentare – frutti interi piuttosto che succhi, per esempio – aumento dell’attività fisica.

Per la verità Lustig non è il primo ad indicare lo zucchero come una delle principali cause di molti dei nostri mali contemporanei. Ben prima di lui, anche se con minor credito scientifico e minori conoscenze rispetto ad oggi, ci fu lo scrittore a attivista americano William Dufty con il suo saggio Sugar Blues, diffuso e letto da milioni di persone in tutto il FAtChangeCovermondo dal 1975 ad oggi.

Sarà ascoltato Lustig? Ma, soprattutto, verranno messe in pratica le sue indicazioni? C’è da dubitarne, per i forti e diffusi interessi in gioco. Molto simili al commercio delle armi negli Stati Uniti. E qui, se vogliamo, stiamo parlando di “armi alimentari”. Intanto la campagna promossa da Michelle Obama, per la sensibilizzazione e la prevenzione dell’obesità, sta dando i primi risultati.

 

Muoviti e non diventerai demente. Attività fisica, istruzione e salute del cervello


CyrusRaji

Cyrus Raji è un giovane neuroradiologo dell’Università di Pittsburgh. Suo principale campo di interesse e ricerca è comprendere attraverso il neuroimaging come mantenere in salute il cervello e, possibilmente, preservarlo da malattie neurodegenerative. In particolare l’Alzheimer.

Nelle ricerche di Cyrus Raji e altri, l’attività fisica si configura sempre di più come vera e propria medicina. L’equazione è molto semplice. Svolgere regolare attività fisica fa dimagrire. Diminuire l’indice di massa corporea, relativa alla massa grassa, fa circolare meglio il sangue. Circolando meglio il sangue, il cervello è meno soggetto ad atrofia. Essendo meno soggetto ad atrofia, soprattutto con l’avanzare dell’età, sarà meno soggetto a demenze.

L’altro aspetto associato a maggiori volumi cerebrali è il grado di istruzione. Con una formuletta potremmo dire: “hai più cervello e meglio funzionante, se apprendi continuamente e ti muovi di più”. Non è così lontana dalla realtà, l’idea che il cervello si possa allenare e mantenere trofico proprio come un muscolo.

In un lavoro di un anno fa, a cui Cyrus Raji prese parte, si legge: “Capire come l’attività fisica, la dieta, l’istruzione, e l’obesità incidono sulla salute del cervello, può aiutare ad identificare gli interventi sugli stili di vita, adatti a rallentare o ritardare il deterioramento legato all’età del cervello”. E in altra parte dello stesso lavoro: “Più alto livello di istruzione e una maggiore attività fisica sono stati associati a maggiori volumi cerebrali”.

La prevenzione diventerà sempre più determinante. Primo, per i noti fattori di crisi economica che sempre più incideranno sulla spesa pubblica relativa alla sanità e alle cure da prestare agli anziani. Secondo, strettamente connesso al primo punto, perché entro il 2030, il 14% della popolazione mondiale avrà più di 65 anni, e l’avanzare dell’età è il fattore di rischio più importante per la malattia di Alzheimer ad insorgenza tardiva.

I risultati più recenti dei suoi studi Cyrus Raji li ha presentati qualche giorno fa all’RSNA di Chicago, la mega-convention dei radiologi mondiali, irrinunciabile non solo per l’aggiornamento e per i contatti, ma soprattutto per la possibilità di “toccare con mano” l’innovazione, in un settore in cui la tecnologia è determinante.

Riferimenti: 

April J. Ho, Cyrus A. Raji, James T. Becker, Oscar L. Lopez, Lewis H. Kuller, Xue Hua, Ivo D. Dinov, Jason L. Stein, Caterina Rosano, Arthur W. Toga, Paul M. Thompson, “The Effects of Physical Activity, Education, and Body Mass Index on the Aging Brain”, Hum Brain Mapp. 2011 September; 32(9): 1371–1382

Epigenetica, ambiente e malattie. Intervista ad Andrea Fuso


Ci sono voluti più settant’anni  per far diventare di moda il termine “epigenetica” da quando, alla fine degli anni  trenta del secolo scorso, il biologo, genetista e paleontologo inglese Conrad Hal Waddington ne introdusse il termine. Scienza giovane e di grande fascino, l’epigenetica indaga quella parte della genetica che interessa l’espressione genica, altrimenti detta fenotipo. In termini molto semplici, il gene si esprime in un modo o in un altro, in salute o in malattia, in rapporto a molteplici fattori, che comprendono tutte le interazioni che il nostro organismo ha con l’ambiente interno ed esterno. L’ambiente esterno include i nostri stili di vita, l’alimentazione, le sostanze con cui veniamo a contatto, il tipo di attività lavorativa svolta e relativi rischi professionali, lo stress cronico, ad esempio.

I cambiamenti epigenetici non comportano variazioni nella sequenza di DNA ma, piuttosto, modificazioni negli istoni (proteine di base che si legano al DNA) che compongono la cromatina, e nella metilazione del DNA (appunto una modificazione epigenetica del DNA). Vale a dire, nel caso della cromatina, di uno dei regolatori principali dell’espressione genica, centrale nella fisiologia cellulare e implicata in molte malattie, compreso il cancro. Essendo l’epigenetica un processo secondo il quale, ad esempio, i fattori ambientali agirebbero nel medio-lungo termine sull’espressione genica, senza modificare la sequenza genetica sottostante, ciò spalancherebbe prospettive enormi nell’eterno problema relativo all’interazione ereditarietà e ambiente.

Quanto contino non tanto i nostri geni, ma bensì, dunque, l’espressione dei nostri geni, in funzione delle molteplici stimolazioni, modificazioni e alterazioni indotte dall’ambiente. Quanto conti inoltre, ad esempio, la modifica dei nostri stili di vita, l’alimentazione, l’attività fisica, una terapia piuttosto che un’altra, nel modificare l’espressione genica. Ecco perché sempre più spesso, anche nella divulgazione più popolare, capiti di imbattersi nell’epigenetica in rapporto alle diete, all’invecchiamento, all’obesità, alle malattie mentali. Spesso il termine, o meglio in concetto, viene però impiegato a sproposito. Come a voler spiegare ogni meccanismo della nostra vita organica e di relazione all’ambiente – comprendente pure il rapporto con i nostri simili e i nostri comportamenti.

L’epigenetica assume, in questi casi, anche una sorta di valenza “positiva” e “liberatoria” rispetto al determinismo e alla “condanna” della genetica. In buona sostanza, dal messaggio che ne deriverebbe: non possiamo intervenire sui nostri geni (o almeno non del tutto e non ancora), ma sull’espressione genica, sì. Un anno fa Time ha dedicato al tema la copertina e un servizio, con titolo significativo: Why Your DNA Isn’t Your Destiny. Il messaggio è chiaro: il DNA non è il tuo destino, quindi puoi fare qualcosa per cambiare il tuo destino.

Ed ecco che l’epigenetica si è conquistata la ribalta in molteplici palcoscenici, compresi quelli dei guru della salute a buon mercato e tendenzialmente new age. Di pari passo sempre più lavori scientifici stanno uscendo sui rapporti tra epigenetica e malattie. Un poderoso Handbook of Epigenetics è uscito due anni fa a cura del biologo molecolare Trygve O. Tollefsbol (Comprehensive Diabetes Center, University of Alabama at Birmingham) e un nuovo volume, “Epigenetics in Human Disease” (Academic Press Elsevier), del medesimo curatore, sta per uscire proprio in questi giorni.

Abbiamo rivolto alcune domande ad Andrea Fuso, autore del ventiseiesimo capitolo (Aging and Disease: The Epigenetic Bridge) dei ventisette che compongono il volume.

Cosa aggiunge l’epigenetica alla conoscenza che già abbiamo riguardo il ruolo dei geni nella nostra vita?

L’epigenetica aggiunge un grado di complessità. E la percezione che ciò che è scritto nei nostri geni non sia immutabile, nel corso della nostra vita, ma possa essere soggetto a modulazioni dinamiche. Siamo abituati a pensare alle differenze fra individui solo sulla base delle differenze del patrimonio genetico. Invece anche le modificazioni epigenetiche, che regolano l’espressione di tale patrimonio, contribuiscono in maniera fondamentale alla definizione del fenotipo. Questa capacità implica la conoscenza del fatto che due individui con un corredo genetico identico possano sviluppare fenotipi differenti grazie alle differenze del loro “epigenoma”; in questo senso sono esemplari gli studi condotti su gemelli monozigoti che dimostrano la presenza di una deriva epigenetica fra soggetti con lo stesso genotipo. Le modificazioni epigenetiche permettono di  modulare l’espressione di un gene, e quindi della proteina da questo codificata, di vari ordini di grandezza: da una regolazione di tipo tutto-o-nulla fino a modulazioni “fini”.

A mio avviso, bisognerebbe fare attenzione a non seguire la “moda” dell’epigenetica solo per motivi di opportunità, cioè parlare di epigenetica in un progetto o una pubblicazione scientifica solo per cavalcare l’onda dell’interesse che esiste oggi intorno a questo aspetto della ricerca biomedica. E forse bisognerebbe anche definire meglio quali debbano essere considerate come modificazioni epigenetiche (oltre alla metilazione del DNA e le modificazioni istoniche, per citare le principali) perché capita di vedere indicati come epigenetici dei pathways che in realtà con l’epigenetica hanno poco a che fare.

Che indicazioni può darci l’epigenetica riguardo lo sviluppo delle malattie? E riguardo il mantenimento o ripristino dello stato di salute?

Oggi sappiamo che alcune malattie hanno una base epigenetica, e per molte altre si stanno accumulando evidenze in tal senso. All’inizio degli anni 2000 solo 3 patologie erano considerate come indiscutibilmente legate all’epigenetica: la sindrome di Rett, la sindrome dell’X fragile e la sindrome ICF. Quello che è diventato evidente negli ultimi 10 anni è che la maggior parte delle malattie multifattoriali e caratterizzate da eziologia non-mendeliana sono o potrebbero essere indotte da alterazioni dell’epigenoma. Fra queste, sono in primo piano i tumori, le sindromi neurodegenerative e, in generale, le malattie associate all’invecchiamento.

Dobbiamo pensare che l’epigenoma (l’insieme delle modificazioni epigenetiche di un organismo) viene stabilito alla fine dello sviluppo embrionale e poi mantenuto, a fronte di alcune regolazioni, durante tutta la vita dell’individuo. Nel corso della vita adulta, l’epigenoma può essere soggetto a modificazioni “non normali” che causano cambiamenti nello stato di attivazione di un gene. Per prendere l’esempio dei tumori, l’ipometilazione di un oncogene o l’ipermetilazione di un gene oncosoppressore danno luogo all’attivazione del primo e al silenziamento del secondo, creando un disequilibrio che può tradursi nell’insorgenza tumorale.

Un aspetto interessante delle modificazioni epigenetiche è che, al contrario delle mutazioni genetiche, non coinvolgono la sequenza nucleotidica del DNA e sono, per loro natura, reversibili. Questo vuol dire che sono anche potenzialmente trattabili attraverso i cosiddetti “farmaci epigenetici”, come già accade proprio per alcuni tumori. In virtù di questo, conoscere meglio le modificazioni epigenetiche e poter capire che determinati stimoli sono in grado di alterarle può diventare il primo passo verso una sorta di prevenzione.

Che rapporti ci sono tra epigenetica e stili di vita?

Esiste un rapporto molto più stretto ed esteso di quanto si potrebbe pensare. Dobbiamo abituarci a considerare le modificazioni epigenetiche come dei veri e propri “mediatori” di un gran numero di stimoli ambientali. L’ambiente in cui viviamo può infatti provocare cambiamenti nel nostro organismo attraverso vari fattori: nutrizione, stile di vita, esercizio fisico, esposizione ad inquinanti, stress di diversa natura. Per moltissimi di questi fattori è stata dimostrato che i meccanismi attraverso cui provocano dei cambiamenti sull’organismo passano tramite modificazioni epigenetiche. In molti casi si sta evidenziando che tale effetto è espletato anche in presenza di esposizioni “moderate”.

Nel caso di alcuni inquinanti, ad esempio, si sta scoprendo che dosi al di sotto di quelle che sono considerate tossiche sulla base delle precedenti conoscenze (cioè dosi che non provocano l’insorgenza di patologie gravi ed evidenti nel medio-breve periodo) sono in realtà in grado di provocare cambiamenti epigenetici responsabili dell’insorgenza di patologie nel lungo termine. Un discorso analogo si può fare per squilibri nutrizionali moderati, in presenza di deficit o sovradosaggi di nutrienti insufficienti a generare patologie ad essi associate che però causano alterazioni delle modificazioni epigenetiche.

L’esempio secondo me più eclatante viene però da studi condotti sugli effetti di stress comportamentali: si è dimostrato che far crescere animali da laboratorio in condizioni di “arricchimento ambientale” (la semplice presenza di oggetti e giochi nella gabbia) provoca l’attivazione di un gene, il BDNF, responsabile della maturazione neuronale e questo proprio tramite l’alterazione di meccanismi epigenetici. Trovo personalmente stupefacente che una differenza ambientale apparentemente così banale, e comunque in assenza di qualsiasi contatto con agenti chimico-fisici esterni, possa provocare una tale conseguenza.

L’epigenetica potrà indirizzare le terapie in modo più mirato ed efficace?

A mio avviso, più che indirizzare le terapie in modo più mirato, potrà dare vita a nuove forme di terapia. Il concetto di indirizzare le terapie mi sembra richiami alla mente più che altro una certa idea di “personalizzazione” della terapia sulla base del genotipo individuale. Nel caso dell’epigenetica, non so se si può parlare di “epigenotipo”, per il semplice fatto, sopra spiegato, che dobbiamo considerare l’epigenoma di un individuo come un carattere dinamico. Se esiste un epigenotipo individuale, magari legato ai diversi momenti della vita, ancora non lo sappiamo.

Mi sento invece abbastanza sicuro del fatto che presto l’uso di farmaci epigenetici si allargherà ad altri ambiti della medicina e della prevenzione. E in questa ottica mi sembrano di grande rilevanza gli studi volti a trovare delle correlazioni fra la nutrizione, lo stile di vita e l’epigenetica, perché configurano interventi, sia preventivi sia terapeutici, che non richiedono necessariamente l’assunzione di farmaci esogeni o di sintesi.

In quali settori delle neuroscienze vede un’utilità maggiore dell’epigenetica?

Al momento mi sembra che i settori più promettenti siano quelli relativi alle patologie psichiatriche, alle malattie neurodegenerative associate all’invecchiamento e alle patologie neurologiche dello sviluppo.

Per quanto riguarda queste ultime, oltre alle già citate sindromi di Rett e dell’X fragile, c’è da aggiungere la possibilità che l’epigenetica giochi un ruolo fondamentale nell’autismo; inoltre, stanno emergendo dati interessanti che collegherebbero deficit nutrizionali durante la gravidanza all’insorgenza  di forme di ritardo mentale più o meno accentuato. Ad esempio è noto che il deficit di folato durante la gravidanza causa difetti di sviluppo del tubo neurale con gravi conseguenze sullo stato del feto; le nuove scoperte in campo epigenetico stressano la possibilità che pur senza arrivare a deficit veri e propri, scostamenti dal range ottimale di folato possano essere alla base di alterazioni dello sviluppo neuronale.

Anche per quanto riguarda le patologie psichiatriche, prima fra tutte la schizofrenia, si stanno accumulando evidenze che indicano una causa nelle alterazioni epigenetiche cui alcuni soggetti vanno incontro nel periodo perinatale e della prima infanzia. Tali alterazioni, modificando l’espressione di geni chiave della maturazione neuronale, possono causare disturbi psichiatrici che diventano evidenti in età più adulta.

Infine, esistono dati già molto significativi che associano patologie neurodegenerative tipiche dell’invecchiamento, quali l’Alzheimer e il Parkinson, a cause epigenetiche. Per queste patologia sono già stati individuati alcuni geni target che mostrano una deriva epigenetica nei soggetti malati. Anche in questi casi si sta facendo strada la teoria che alcune modificazioni epigenetiche avvengano nelle primissime fasi della vita, rimanendo “dormienti” fino a che l’attivazione di pathways molecolari legati all’invecchiamento o l’esposizione ad altri fattori scatenanti non ne induce la manifestazione dando origine alla patologia.

Cosa si aspetta nel prossimo futuro dagli studi e ricerche in epigenetica?

Le ricerche nel campo dell’epigenetica stanno facendo degli enormi passi in avanti in questi ultimi anni, grazie anche al rinnovato interesse che si è creato intorno a queste tematiche da quando si è cominciato a capire che le modificazioni epigenetiche possono avere un ruolo in molte patologie. Pertanto mi aspetto innanzitutto che si crei un circolo virtuoso in questo senso, con le nuove scoperte che facciano da volano a sviluppare nuove ricerche. L’avanzamento tecnico permetterà inoltre di studiare sempre più in dettaglio le modificazioni epigenetiche e magari di identificarne di nuove (ad esempio sta emergendo il ruolo dell’idrossimetilazione del DNA (fino a poco fa praticamente sconosciuta).

Mi auguro che le ricerche vadano di pari passo in due sensi: quello delle analisi cosiddette “genome-wide”, in cui si studiano le differenze su un grandissimo numero di siti, e quello delle analisi sequenza-specifiche, in cui si studia nel dettaglio il pattern epigenetico di un gene e i suoi cambiamenti. Se così non avvenisse, la grossa spinta che hanno oggi le analisi su larga scala rischierebbe di rimanere sterile in quanto identificare un sito di modulazione epigenetica associato ad un gene non è sufficiente a dare informazioni funzionali.

Infine, mi aspetto che, grazie ai chiarimenti sul ruolo dell’epigenetica nelle patologie, venga considerato e studiato l’utilizzo di terapie (farmacologiche, nutrizionali o perfino “comportamentali”) mirate a ristabilire o mantenere il pattern epigenetico non-patogenico.

Chi è Andrea Fuso

Ricercatore a contratto presso La Sapienza Università di Roma, Andrea Fuso conduce la sua attività di ricerca con il dipartimento di Psicologia, sezione di Neuroscienze e il dipartimento di Chirurgia “P. Valdoni”.

E’ laureato Scienze biologiche alla Sapienza Università di Roma nel 1997 ed ha acquisito il dottorato in Enzimologia all’Università degli studi de L’Aquila nel 2001. E’ docente in corsi post-laurea presso la Sapienza Università di Roma. E’
autore di oltre 30 articoli scientifici pubblicati in riviste internazionali.

Il suo principale interesse di ricerca è incentrato sullo studio del cosiddetto “one-carbon metabolism”, o ciclo dell’omocisteina, sul ruolo della S-adenosilmetionina e sulle reazioni di metilazione, con particolare interesse per i meccanismi di metilazione del DNA in relazione alla regolazione dell’espressione genica. Nel campo delle scienze di base, studia le dinamiche dei pattern di metilazione/demetilazione del DNA ed il ruolo della metilazione “non-CpG”. A livello applicativo, studia principalmente il ruolo dell’epigenetica, della nutrizione e del ciclo dell’omocisteina nelle forme di Alzheimer sporadico (LOAD: Late Onset Alzheimer’s Disease) ed i meccanismi di metilazione del DNA nel differenziamento muscolare. Altre aree di interesse della sua ricerca riguardano il ruolo del ciclo dell’omocisteina e delle reazioni di metilazione in modelli sperimentali di sindrome di Rett, autismo, neurosviluppo e cancro.